Si consideri un laser
che emette radiazione elettromagnetica di una ben precisa lunghezza d’onda o.
Questo significa, assimilando l’onda elettromagnetica ad una sinusoide,
che la distanza tra due creste d’onda – due massimi della sinusoide – è
pari a o.
Supponiamo che il laser sia in moto con velocità v verso un osservatore, e che si trovi ad una distanza L1 al momento dell’emissione di una determinata cresta d’onda. Dal momento che la luce viaggia con velocità c, la cresta d’onda successiva viene emessa dopo un tempo o=o / c (il tempo necessario alla seconda cresta per raggiungere la posizione occupata dalla cresta precedente), quando il laser si trova ad una distanza L2=L1-v o . Pertanto la prima cresta giungerà all’osservatore dopo un tempo t1=L1/c, e la seconda dopo un tempo t2=o+L2/c. Dunque per l’osservatore le due creste d’onda si succedono dopo un intervallo temporale = t2 - t1 = o + (L2 - L1) / c = o (1 - v/c) = ( o/ c)(1 - v/c) Tenuto conto che anche per l’osservatore
vale la relazione generale =/c,
si ottiene la seguente espressione per la lunghezza d’onda della radiazione
percepita dall’osservatore:
/ o = 1 - v/c
. Se esprimiamo la lunghezza d’onda osservata in termini della sua differenza
rispetto alla lunghezza d’onda di laboratorio (ovvero la lunghezza d’onda
nel caso di una sorgente immobile), possiamo scrivere
/ o = - v / c Si noti che, a causa della presenza
del segno meno, la lunghezza d’onda della radiazione di una sorgente in
avvicinamento appare più corta di una quantità tanto maggiore
quanto maggiore è la velocità della sorgente. Nel caso di
allontanamento, al contrario, la lunghezza d’onda apparirà maggiore.
in cui, per semplicità di notazione,
abbiamo posto = v/c.
|
Home
Spigolature |
Livello
Base |